A Mixed Deep Recurrent Neural Network for MEMS Gyroscope Noise Suppressing
نویسندگان
چکیده
منابع مشابه
A Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملDeep Gate Recurrent Neural Network
This paper explores the possibility of using multiplicative gate to build two recurrent neural network structures. These two structures are called Deep Simple Gated Unit (DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), both structures require fewer parameters and le...
متن کاملChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification
Brain-related disorders such as epilepsy can be diagnosed by analyzing electroencephalograms (EEG). However, manual analysis of EEG data requires highly trained clinicians, and is a procedure that is known to have relatively low interrater agreement (IRA). Moreover, the volume of the data and the rate at which new data becomes available make manual interpretation a time-consuming, resource-hung...
متن کاملANFIS Approach for Tracking Control of MEMS Triaxial Gyroscope
In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) based control is proposed for the tracking of a Micro-Electro Mechanical Systems (MEMS) gyroscope sensor. The ANFIS is used to train parameters of the controller for tracking a desired trajectory. Numerical simulations for a MEMS gyroscope are looked into to check the effectiveness of the ANFIS control scheme. It proves that the sy...
متن کاملDeep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection
In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are pred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2019
ISSN: 2079-9292
DOI: 10.3390/electronics8020181